Indian Statistical Institute, Bangalore Centre B.Math. (III Year) : 2011-2012 Semester II : Mid-Semestral Examination Probability III (Stochastic Processes)

02.03.2012

Time: $2\frac{1}{2}$ hours.

Maximum Marks : 80

Note: The paper carries 82 marks. Any score above 80 will be taken as 80. State clearly the results you are using in your answers.

1. (5+10 = 15 marks) The transition probability matrix of a Markov chain on the state space $\{1, 2, 3, 4, 5, 6\}$ is given by

			1	2	3	4	5	6	
Р	=	1	(0	0	0	1	0	0)
		2	1	0	0	0	0	0	
		3	0	1	0	0	0	0	
		4	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	
		5	0	0	Ō	0	Ō	1	
		6	$\int 0$	0	0	1	0	0	Ϊ

(i) Show that the Markov chain is irreducible.

- (ii) Find the period.
- 2. (6+9 = 15 marks) Let $\{X_n\}$ be a Markov chain on a countable state space S with transition probability matrix P. For $x, y \in S$, let $G_n(x, y) =$ expected number of visits to y during times $j = 1, 2, \dots, n$ for the Markov chain starting at x.
 - (i) Show that $G_n(x, y) = \sum_{k=1}^n P_{xy}^{(k)}$.

(ii) Let $x \in S$ be a positive recurrent state; suppose that $y \in S$ is accessible from x. Show that y is also positive recurrent.

- 3. (5+10 = 15 marks) Consider an unrestricted birth-death Markov chain $\{Y_n\}$ on \mathbb{Z} with transition probabilities $P_{i,i+1} = p_i, P_{i,i-1} = q_i, P_{ij} = 0, j \neq i-1, i+1$, for all $i \in \mathbb{Z}$. Suppose $p_0 = q_0 = \frac{1}{2}$, $p_i = p^+ > q^+ = q_i$ for all $i \geq 1$, $p_i = p^- < q^- = q_i$ for all $i \leq -1$, with $p^+ + q^+ = 1, p^- + q^- = 1, 0 < p^+ < 1, 0 < p^- < 1$.
 - (i) Show that $\{Y_n\}$ is irreducible.
 - (ii) What can you say about recurrence/ transience of $\{Y_n\}$?

- 4. (15+5=20 marks) Let $0 . Let <math>\{X_n\}$ be a Markov chain on $\{0, 1, 2, \dots\}$ with transition probabilities given by $P_{i,i+1} = p, P_{i0} =$ $1-p, i = 0, 1, 2, \dots$ and $P_{ij} = 0$, otherwise.
 - (i) Find a stationary probability distribution of $\{X_n\}$.
 - (ii) Is stationary probability distribution of $\{X_n\}$ unique?
- 5. (17 marks) Let $\{X_n : n = 0, 1, 2, \dots\}$ be a Markov chain on a finite state space S. Suppose there are only two irreducible closed sets C_1, C_2 for the Markov chain. For i = 1, 2, let $\mu^{(i)}$ be the unique stationary probability distribution for the Markov chain restricted to C_i . Let μ be a probability distribution on S. Show that μ is a stationary probability distribution for $\{X_n\}$ if and only if $\mu = a\mu^{(1)} + (1-a)\mu^{(2)}$, for some $0 \le a \le 1$.